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For more than three modes, this method of obtaining v becomes
too inefficient. For four or more modes, that is, in cases where a

matrix of order 8 or higher is obtained, the propagation coefficient
could be evaluated by finding the eigenvalues of the complex matrix.
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Transmission Line Transformation Between Arbitrary
Impedances Using the Smith Chart

P. I. DAY

Abstract—A graphical method for transforming between two com-
plex impedances using a single transmission line matching section
is described. The Smith chart is used in a mode where the chart nor-
malizing impedance is arbitrary.

In a recent letter, Arnold [1] presented a graphical method for
transforming complex load impedances into resistive load imped-
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ances using a transmission line section, determining both the line
impedance and length. The Smith chart was used although the line
impedance was initially unknown. The method can be extended to
cover the transformation between two complex impedances using
a construction described in earlier literature for evaluating the line
impedance in the complex transformation.

Somlo [2] showed that the characteristic impedance required
for a line to transform two arbitrary impedances can be found by
using an arbitrary normalizing impedance and constructing a circle
centered on the real axis passing through the two impedance points.
The technique was based on these properties of a Smith chart:
1) the locus of impedance along a loss-free line is always a circle;
2) the line impedance is given by the geometric mean of the circle
intercepts with the real axis. A further property not mentioned by
Somlo is that: 3) the square root of the ratio of the intercepts is the
VSWR on the line.

The line length could be determined by reentering the Smith chart
in the normal manner with the calculated line impedance. This letter
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suggests a method of determining the line length without reentering
the chart and uses a construction similar to that proposed by Arnold
1]

‘We will consider the example of transforming Z, = (1 + j1) to
Zs = (2 + j3). A suitable normalizing impedance is 2 Q@ since this

ensures that Somlo’s circle through the two points is centered near:

the chart origin, the condition for greatest accuracy occuring when
it is exactly centered. Somlo’s construction yields a circle centered
at C and with intercepts at 0.45 and 5.0; whence Z, = 1.5, this point
is entered on the chart (Fig. 1). This construction has been left out
for clarity but the chart center is marked; we note that this point
only coincides with Z, either when both lie on the origin or the circle
has zero radius. Construct a circle passing through Z; and the ends
of the real axis A and A’. Extend the line Z;, — Z, to the circle at P,
then construct P — 0 — I,l; is then the angle equivalent of the
reflection coefficient for Z;. A similar construction for Zg yields Ig
and the length of transmission line required is the difference between
the two values of I, the direction of rotation is as in normal Smith
chart practice and dl = 0.086X.

Use of the Smith chart in the arbitrary normalization mode enables
one to define the range of impedances to which a known impedance
may be transformed using a single matching section. Using Z;, =
(1 +j1) normalized to 2 @ we enter the chart in Fig. 2. The imped-
ance can be matched to any other provided the circle constructed
through the two impedance points does not intercept the chart
boundary at p = 1. This limits the range of impedances to which Z;,
may be matched to the area shaded on Fig. 2.

P

Fig. 1. Construction for transforming Z; = 0 + jl1)to Zs = (2 + 73).

7

2
Z
<

Fig. 2. Area of simple matching impedances to Zy, = (1 - jl).
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Analysis of DC Blocks Using Coupled Lines

CHEN Y. HO

Abstract—It is shown mathematically that dc¢ blocks can be
realized by using \/4 — 3-dB directional couplers with both coupled
port and transmitted port open-circuited.

Using A/4 — coupled-line structure, de blocks in microwave fre-
quency have been realized in the past [1]. The approach of analysis
used in [1] employs an approximate equivalent circuit based on
the even- and odd-mode propagation in coupled lines of [2]). It is
the purpose of this letter to show that this type of de block can be
analyzed exactly as a 3-dB directional coupler with both coupled
port and transmitted port open-curcuited. The results are general
and can be applied to any type of realization of 3-d13 directional
couplers, not necessarily restricted to microstrip edge-coupled lines.

The schemetic of conventional directional couplers is shown in
Fig. 1 in which port 1 is assumed the input port, port 2 is the coupled
port, port 3 is the isolated port, and port 4 is the transmitted port.

By assuming that ports 1 and 3 are terminated with the charac-
teristic impedance Z,, while ports 2 and 4 are open-circuited, the
impedance matrix of this four-port network [37] can be simplified
as follows:

IVl le Zl3 Il
= 1)
,V3 Z31 Z33 Ig

where Vi, I, V;, and I; are voltages and currents at port 1 and
port 3, respectively, and

Zoe + Zoo 1
Zy = 2y = -
. ® 2s s(1 — k)12 Zo (2)
(Zoe — Zog) (1 — sB)V2 k(1 — )12
- du=Zn= % = S — pAS (3)

where

Zo. even-mode impedance of the coupled lines;

Zo odd-mode impedance of the coupled lines, and ZoZoo = Zo%;
k  voltage coupling coefficient;

s (—1)12 tan(6), 0 is the electrical length.

After substituting the relation V; = —Z,J;into (1), and elimina~
ting the variable I3, we obtain '
Vi ZsZsn
—=Zm=2Zun— — 4
11 nl 11 ZO + Z33 ( )
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